
A Distributed Collaboration Framework for Stream Annotation
Tao Huang12, Shrideep Pallickara2,

Geoffrey Fox12
Department of Computer Science1

Community Grids Lab2

Indiana University Bloomington
Bloomington, IN, US, 47404

{taohuang, spallick, gcf}@indiana.edu

ABSTRACT

Research groups and software companies have developed a
number of multimedia collaboration tools such as Access
Grid and Vannotea to archive collaborative objects such as
audiovisual communications and digital annotations. Most
of these tools are designed to process multimedia data
streams, and it is not easy for their users to extend or
modify them to support other types of data streams such as
those generated by earthquake sensors and medical
instruments. It is challenging to design and develop a
system that supports creating, sharing and replaying
annotations on user specific data streams. In this paper, we
make a general survey of several popular collaboration
and annotation tools, and then present our prototype of a
distributed collaboration framework that enables
annotation of generic data streams. It supports basic
collaborative annotation operations on the data, and it also
provides a set of capturing and rendering interfaces that
simplify the procedure of adding support for new types of
data streams.

KEYWORDS: Distributed Collaboration, Annotation,
Multimedia, Data Stream

1. INTRODUCTION

Most existing collaboration systems [1-4] can be
categorized into two major classes: audiovisual based or
digital document based. It becomes difficult when people
are required to do collaborative work on new types of real
time streaming data. For example, a doctor at Bloomington
hospital may want to discuss with his co-workers in
Indianapolis about a patient’s condition. They may use any
kind of videoconferencing tools to communicate verbally
or even do collaborative annotation on some X-ray
scanning images of the patient. Doctors in Indianapolis
nevertheless cannot see the real time heartbeat readings or
blood pressure on the monitor of the medical instrument at
Bloomington. Though we could solve this problem through
some remote display sharing tools, it disables the mutual
communication, which causes obstacles to a timely
diagnosis. It would be convenient if the collaboration tool
they are using can accept those medical data, transfer them

to the remote site over the internet and render them as
requested.

This paper describes a novel prototype system
developed by the Community Grids Lab at Indiana
University Bloomington to solve above problem. It is
implemented based on two other projects of the same lab:
GlobalMMCS [2][5] and Naradabrokering [6]. We use the
media module of the GlobalMMCS project, which is
implemented on top of the Sun’s JMF [7] library, to enable
capturing and rendering of live multimedia streams from
web cameras and microphones. Encoded streaming data are
transmitted and disseminated through events within the
Naradabrokering network. In order to make it simple to
support new types of data streams, we analyze generic
behaviors of stream processing and define a set of
interfaces helping users implement their own capturing
sources and rendering players. The system is also designed
to have some sort of fault tolerance on system failures, two
recovery strategies are used to deal with situations of local
and remote node malfunctions. Details will be explained in
later sections.

This paper is organized as follows. Section 2 is a brief
survey of popular existing annotation systems. Based on
the analysis of these systems, we summarize our objectives
of the collaboration framework in section 3. In section 4,
we describe the architecture and important components of
the prototype system. Annotation management is explained
in details in section 5. After analyzing results of some
preliminary experiments in section 6, we conclude and
present our future plans.

2. RELATED WORK

Distributed collaboration and annotation systems [8-12]
have been developed in the past decade all around the
world. These systems have been designed to service
different aspects of collaboration. H.323 systems such as
Polycom and Tandberg dominate the videoconferencing
market and they do provide reliable audiovisual
communications in the heterogeneous network. As a free
alternative, Access Grid [1] is very popular in the academic
community. Scientific discussions and lectures are being
held on this platform almost every day. Besides

videoconferencing, document sharing and annotation is
another major requirement of current collaborative
annotation systems. Tools such as Google Docs [3] and
Microsoft Office Live Workspace [4] are invented to
facilitate online document based work. Recently all these
tools tend to share their features. For instance, Access Grid
has some basic document sharing capabilities via its web
portal while Good Doc users can video chat with each other
through the new Gmail feature.

In this section, we make a brief survey of popular
distributed annotation and collaboration tools. By analyzing
them, we try to find out important features that can be
introduced to our prototype.

Microsoft research released its annotation system
MRAS [11] in 2000, the system was designed to help
Microsoft employees gain better training experience
through asking questions on pre-recorded lecture videos.
The questions are anchored on the multimedia content and
answered by the instructors asynchronously. Since the
questions can be synchronously replayed with the class
content, students that have similar questions at the same
time spot will benefit a lot from reading answers to the
previous question. Collaboration is achieved through
discussions on the questions and their answers. MRAS
doesn’t support live video feeds and students who are
watching the same video streams could not exchange their
thoughts in the real time.

IBM’s Mpeg-7 annotation tool – VideoAnnEx [12]
was also released in 2000. It can parse Mpeg video files
and segment them into small shot units. Each shot unit can
be annotated with a description from three default
categories: static scene, key object and event. All shot
units are stored into a XML file as well as their
descriptions/annotations following the Mpeg-7 standard.
Users can search among the descriptions and replay the
video shots alongside the description they are looking for.
VideoAnnEx is a stand-alone annotation program that
cannot accept live video feeds either, and it does not
support sharing and manipulating video streams among
distributed users. It can merely process Mpeg-1 and Mpeg-
2 video files and the descriptions are limited to three pre-
defined categories. It is difficult to extend the system
without modifying the underlying source.

A group of researchers from University of
Queensland invented Vannotea [13] to help facilitate
collaborative video indexing, annotation and discussion of
video contents in the distributed broadband environment. It
supports most features that VideoAnnEx has and provides
more flexibility on the metadata of video segments.
Vannotea users are able to save, browse, retrieve and share
both objective descriptions of the video files as well as
subjective annotations on them. The videos files are still
limited to Mpeg-2 format and users can only create text
descriptions.

eSports [14] developed by Community Grids Lab is
another attempt to enable collaborative annotation on
multimedia content over the distributed network, especially
the grid computing network. It enriched the annotation on
multimedia contents from simple text to more diverse
forms such as graphic shapes, audio/video clips. As its
name indicates, eSports system aims to help sport coaches
train their trainees remotely through vocal and graphic
annotations on real time or archived video streams.
Coaches can take snapshots of sample gestures in the video
and comment on them to help students understand their
classes. Annotations and video streams are archived using
Naradabrokering storage service and can be replayed
synchronously based on their timestamp property. Since the
streams are stored as a series of Naradabrokering events
rather than large video files, users can ask to replay any
part of the stream without loading all related events. Live
chat is also implemented to improve the real time
communication in the system.

All systems described here provide video annotation
capabilities and support synchronous replaying of
annotations/descriptions alongside the video content.
MRAS and VideoAnnEx are stand-alone programs that
enable asynchronous communication and searching in
annotation, while Vannotea and eSports spent more efforts
in supporting annotation on real time video streams in
distributed environments. None of them has considered the
ability of supporting non-multimedia streams, and it is
difficult to add this new feature to them without modifying
their sources codes.

3. OBJECTIVES

From the survey and analysis in the previous section, we
can determine basic objectives of our collaboration
framework for stream annotation. It should be able to
support creating, archiving and replaying multiple forms of
annotations on either real time or prerecorded data streams
without knowing their characteristics. The system should
support both synchronous and asynchronous
communications on both annotations and content streams.
As a distributed system, a robust session management is
required to make the system tolerant to possible hardware
or network failures. It should have capabilities of
recovering from disastrous situations. In addition the
system needs to support following features that help expand
its application fields:

1. Support processing multimedia streams in
different formats/codecs.

2. A generic data stream processing API, which can
help users extend the system with their own
stream capturing sources and rendering players.

3. Support annotating, commenting and discussion
on live data streams. Users in the same session
should be able to watch each other’s annotation in
the real time instead of loading them from the
archiving repository.

4. A simple interface that helps in saving, searching
and sharing annotation among distributed users
easily.

5. The system should support various types of clients
from handheld devices to streaming clients.

4. ARCHITECTURE

Figure 1 below depicts a typical scenario of using our
prototype. A stream annotator is feeding a live video stream
to the system and making notes on it. Client A and B are
live collaborators in the same session and they are able to
ask questions on the video stream while it is being played.
Another client using a handheld device is watching the
collaboration activities between the annotator and client A
and B. Session information, annotations and stream data are
transmitted and exchanged using Naradabrokering events.
All events are automatically stored into the stream
repository for later replays. Different metadata are stored in
each event’s header, and information within them facilitates
functions such as stream synchronization and system
recovery.

Figure 1: System architecture

In the above picture, we can find three major
components of the system: Session Manager, Annotation
Client and Stream Archiver. Session Manager maintains all
session related information such as client joining or
leaving. The client is responsible for generating content
streams as well as receiving and replaying streams from
other clients. It also parses annotation events to reproduce
actual annotations on the content stream. Stream Archiver

is spawned by Session Manager to archive live streams in
the stream repository, either locally or remotely. It is also
responsible for retrieving archived streams as per the
client’s requests.

Session Management

Due to the pub/sub nature of the Naradabrokering platform,
we use heartbeats to manage the session information in the
system. Each component in the system continuously
publishes its own heartbeat event to public channels. All
clients will monitor heartbeat events in the session channel
and maintain their own copies of the session status, i.e. list
of active clients in current session. Unresponsive clients
will be removed from the list if other clients cannot hear
from them for more than three seconds. Session Manager
monitors the session channel as well and periodically
broadcasts its own client list as the standard for
participating clients to synchronize their lists with. Session
Manager will also monitor the service channel to control
active stream archivers and remove unnecessary ones. A
status report will be generated and stored in the local file
system and remote stream repository after a customizable
period of time.

As the core management component of a distributed
system, Session Manager should be available all the time
and be able to recover from disastrous situations such as
program crashes and power outages. We use two strategies
to maintain such durability: Local recovery and Remote
recovery.

Local recovery: Alongside the running Session
Manager, a daemon process (gray manager in Figure 1)
keeps collecting session information as other clients do. It
starts taking over the management responsibility when the
running manager freezes and stops publishing standard
heartbeat. It will kill the original manager process, changes
its own status by parsing the latest status report on the file
system and create another daemon process to take over its
previous job. Since clients will not check the source of the
standard heartbeat, they will not know the manager has
been replaced.

Remote recovery: We could not apply local recovery
if there were hardware problems or power outages on the
running manager machine. In such circumstances, all
clients will find a best machine among them by exchanging
and comparing their hardware information. The most
appropriate client will create the manager process, adjust its
status according to the remote status report and start
collecting information from both the session and service
channels.

Annotation Client

Figure 2 below shows three layers of our annotation client:
Transmission layer, Logic layer and Presentation Layer
from the bottom up. Each takes its own responsibility of
processing the streaming data.

Figure 2: Three layers of the annotation client

The Transmission layer is responsible for creating and
managing actual data transmission handlers (called
DataTransmitter in the source). Each transmission handler
contains a pair of Naradabrokering event consumer and
publisher, and it subscribes itself to a particular topic
specified by the ID of the stream it operates on. In order to
minimize the cost of handler creation and termination, a
pool of handlers (around 5 handlers) are created during the
start up of the client. Similar to the Java thread pool,
transmitting handlers are assigned and recollected by a
handler manager.

The Logic layer works as an important mediating
layer between the Transmission layer and the Presentation
Layer. For stream capturing and rendering, a stream sender
or receiver will be created to connect a stream
source/renderer from the presentation layer with a
transmitting handler from the transmission layer and start
the processing. There is a stream manager in this layer to
manage all active senders and receivers. The Annotation
manager also sits within this layer to associate and
synchronize content data streams with the annotation
streams.

The Presentation layer is the upper-most layer and it
contains the graphic user interface, stream source and
renderer managers. Similar to the DataSource class in the
JMF library, a stream source is an object that can generate
real time data constantly when it is started. It can be paused
or stopped. Stream renderers are used to decode received
stream data and display the content on the screen.

Figure 3 below is the class diagram that shows the
interrelationships between the stream source/renderer
interfaces and the stream sender/receiver classes.

Figure 3: Class diagram of stream processing interfaces

Since the stream source/sink interfaces in above
picture only define the generic behaviors of a real time data
stream, users can easily write their own stream sources and
renderers to extend the system. They just need to
implement those interface methods in their existing
source/rendering classes and compile them with the client
source. This will save a lot of effort as opposed to
understanding and modifying source codes of the entire
system. In our current release, we have implemented
several stream sources such as video/audio capturing
source, file capturing source and screen capturing source
and their corresponding renderers. With the help of the
GlobalMMCS media module, our system supports various
video/audio formats on different operation systems. We list
them in the table 1 below.

OS Video Audio Screen Capture

Windows
H.261,
H.263,

Divx, Jpeg

ULaw,
GSM,
DVI,
G729

H.261, Divx, Jpeg

Linux
H.261,
H.263,
Jpeg

ULaw,
GSM,
DVI

N/A

Mac
H.261,
Jpeg

ULaw,
GSM,
DVI

N/A

Table 1: Supported formats on different OS

User Interface

Figure 4 is a snapshot of our annotation client running on
Windows XP. We implement the client using SWT library
[15], an OS-independent widget toolkit from the Eclipse
project. The client comprises a tree based client list and
three composite panels. Each panel can be maximized to
show as much information as possible.

Figure 4: User interface snapshot

The client list on the left displays all participating
clients in the same session. The user can open any data
stream (video steam in the snapshot) being sent by a client.
Once the receiver of this data stream is created and started
successfully, the renderer window will be displayed in the
stream renderer list on the right panel. Users can also select
to create a clone of the playing renderer to the center panel
by checking the checkbox underneath it. A stream progress
widget is also created on the progress panel below once the
clone starts playing. Unlike the original renderer window
on the right, the cloned renderer can be positioned
anywhere on the center panel and the user is able to either
rewind or fast forward the playing content by dragging the
progress indicator on its stream progress widget.

Alongside the client list, there is an archive list that
only displays information of data streams stored by stream
archivers. Users can apply all available operations on these
archived streams as if they were normal live streams. There
is no difference between them and the live streams since
they are just duplicates of the stored live streams from the
event repository, loaded and published by stream archivers.
More details of archiving and replaying streams will be
explained in the next section.

There are two modes of rendering received data
streams in our client: live and buffered. The first mode is
the default one. Events of an incoming data stream are
temporarily stored in a small in-memory buffer to reduce
the influence of possible event losses in the transmission.
Sometimes, it would be useful if users could rewind the
playing content to the exact position that they want to insert

annotations at. This requires enabling the buffered mode of
rendering the stream. As depicted in the following figure 5,
decoded video frames are written into a temporary file and
can be retrieved from any time spot based on the frame rate
information inside the stream’s video codec. When the user
makes a rewind operation on the current stream progress, a
buffered stream source is created at the correct playing time
and started to read the correct video frames from the buffer
file for the stream renderer to display. A reading clock
controls the speed of the buffered source and makes sure
that it generates frames at the right frame rate. Despite the
disk access overhead introduced here, this feature enables
annotation on live video streams while they are being
watched.

Figure 5: Stream Buffer Example

Stream Archiver

Stream Archiver is one of the most important
components in the system. It takes the responsibilities of
archiving live data streams and replaying them per the
client’s requests. In our current implementation, the
archiver stores every stream event into a remote database
alongside the meta-information such as time stamp and
stream description in the event’s header. When a request of
replaying a particular data stream is received, the
corresponding archiver will read all stream events based on
time range information within the request. Events will be
published to a specific replaying topic based on the request
ID known by the requesting client.

As explained in the previous section, Stream Archiver
is monitored and controlled by the Stream Manager. When
a sending stream is stopped, Stream Manager will terminate
its corresponding archiver unless there are some clients
requesting to replay this stream.

5. ANNOTATION MANAGEMENT

In Figure 4, you can see that there is a stream progress
panel on the bottom of the client. It allows users to control
the rendering of data streams on the center annotation panel

Stream Progress Panel

Stream List

Panel

Center
Annotation

Panel

Client List

and create annotations on them. The stream progress
widget displays the length and playing progress of the
stream. When an annotation is created, information of all
the stream renderers on the annotation panel is stored into a
XML DOM object and each renderer starts to update this
object with its newest progress. Following is an XML
example generated from a simple annotation DOM object.

Figure 6: Annotation Dom Object in plain XML

As seen in the picture, there are no actual stream
events stored in this XML file. We only record information
that represents the layout of all active streams in the
annotation panel, for example, position of the renderer on
the center annotation panel, absolute start time of the
stream and its duration. All this information will be used to
reconstruct the annotation scenario later on.

When the annotation owner closes the annotation, an
XML copy of the annotation object will be saved remotely
in the annotation storage. A local copy is also created as
backup for fast accessing. When the user decides to replay
the annotation he creates, the client will first check the
local file system before asking the remote repository. The
Dom object will be parsed and created from the XML file
and all renderers will be regenerated as well as their
annotation.

6. PRELIMINARY EXPERIMENTS

Being at the early stage of the prototype development, we
are more interested in making the system stable and
capable of dealing with large number of data streams at the
same time. Therefore we did some preliminary stress tests
on the stream archiver by feeding a different number of
multimedia streams in different formats at the same time.
CPU usages of the running archiver process are logged and
displayed in the following Figure 7.

Figure 7 CPU usages of Stream Archiver archiving
different multimedia stream

The experiments were done on an Intel Pentium 4
machine with a 3.40GHz CPU and system memory of
1.75G. The results show us that the stream archiver works
pretty well on streams that are made up of events with
small payloads, such as audio streams and highly
compressed video stream in the figure. Less than 10% CPU
was used to process 20 simultaneous Video.H.263 streams.
Since a large event payload requires more copy instructions
and system I/Os, it is not hard to explain why CPU usages
were so high when the stream archiver tried to archive
those Video.JPEG streams. We also notice that the CPU
usages of brokers in the Naradabrokering system were also
at a quite high level when they are transmitting
Video.JPEG streams.

Our system has a built-in whiteboard (see Figure 4) to
support free-hand drawing annotation as eSports does. It is
important that drawings such as lines, shapes and inserted
images are displayed timely on remote clients, especially
when our users are working on real time data streams.
Delayed or disordered annotations on live streams will
cause problems to the real time communication. We test
our system by sending large amounts of free-hand
whiteboard events in a short time (1 second) while system
users are playing different types of multimedia streams. We
record the time difference between each event’s creation
time and the rendering time at a remote client. The Average
of all differences in the same test is used as the final result.

Figure 8 Time delays of free hand white events

Though ascending, time delays caused by the system
are still much lower than the required perception level of
delay (200-400ms for video streams) in a cooperation
system [16]. Distributed users will not have any kind of
difficulties on whiteboard annotations in the system when
they are cooperating on any of current supported data
streams.

7. SUMMARY AND FUTURE WORKS

In this paper, we introduce a novel framework system that
supports collaborative annotation on generic data streams.
It supports sending, browsing, rendering and annotation on
real time data streams in distributed environments and our
experiment results show that it works properly for
compressed data streams under high stress circumstances.

This system expands its scope of application through
generalizing the procedure of data stream processing and
defining basic stream capturing and rendering interfaces.
Users are able to quickly extend the system by writing their
own stream sources/renders. Through implementing those
interface methods, we can support more types of data
streams other than mere multimedia ones in the system,
which makes it more capable of satisfying diverse
application requirements. The system also provides a
simple user interface to ease the manipulation of streaming
data and it also supports annotation on live data streams via
local stream buffers.

Our next step is to continue the development of this
prototype to improve its stability. More stream sources and
renders will also be added to the system to support data
streams generated by other sources such as earthquake
sensors, handheld devices and medical instruments rather
than multimedia equipments. A configuration detector will
be added to the system to simplify the recognition of new
“StreamSource”s and “StreamSink”s. We also plan to
standardize our annotation metadata format into Mpeg-7
compatible version so that we can have more accurate
search functionality.

REFERENCES

[1] Access Grid project: http://www.accessgrid.org

[2] GlobalMMCS: http://www.globalmmcs.org

[3] Google Doc: http://doc.google.com

[4] Microsoft Office Live Workspace: http://
http://workspace.officelive.com

[5] Wenjun Wu, Tao Huang, Geoffrey Fox, “Building
Scalable and High Efficient Java Multimedia
Collaboration,” Proceedings of IEEE 2006
International Symposium on Collaborative

Technologies and Systems CTS 2006 Las Vegas May
14-17 2006

[6] S. Pallickara and G. Fox, “NaradaBrokering: A
Middleware Framework and Architecture for Enabling
Durable Peer-to-Peer Grids,” Proceedings of
ACM/IFIP/USENIX International Middleware
Conference Middleware-2003. pp 41-61.

[7] Sun Java Media Framework API:
http://java.sun.com/javase/technologies/desktop/media/
jmf

[8] Carrer, M., Ligresti, L., and Little, T. D, “A Tcl/Tk-
based video annotation engine,” Proceedings of the 5th
Conference on Annual Tcl/Tk Workshop 1997 -
Volume 5, USENIX Association, Berkeley, CA, 30-30.

[9] A. Savakis, P. Sniatala, and R. Rudnicki, “Real-time
Annotation using MPEG-7 Motion Activity
Descriptors,” MIXDES 2003, Lodz, Poland, June 2003.

[10] Wei Ren and Sameer Singh, “An Automated Video
Annotation System,” Pattern Recognition and Image
Analysis, ICAPR 2005, LNCS 3687, pp. 693 – 700,
2005.

[11] Bargeron, D., Gupta, A., Grudin, J., Sanocki, E., Li, F,
“Asynchronous Collaboration Around Multimedia and
its Application to On-Demand Training,” Proceedings
of the 34th Hawaii International Conference on System
Sciences (HICSS-34), January 3-6, 2001, Maui, Hawaii

[12] J. R. Smith and B. Lugeon, "A Visual Annotation Tool
for Multimedia Content Description," Proc. SPIE
Photonics East, Internet Multimedia Management
Systems, November 2000.

[13] R. Schroeter, J. Hunter, and D. Kosovic. “Vannotea -
A Collaborative Video Indexing, Annotation and
Discussion System for Broadband Networks,”
Knowledge Markup and Semantic Annotation
Workshop, K-CAP 2003. Sanibel, Florida.
October 2003.

[14] Gang Zhai, Geoffrey Fox, Marlon Pierce, Wenjun Wu,
Hasan Bulut, “eSports: Collaborative and Synchronous
Video Annotation System in Grid Computing
Environment,” Proceedings of IEEE International
Symposium on Multimedia (ISM2005), Pages 95-103,
IEEE Computer Society, December 12-14, 2005
Irvine, California, USA

[15] SWT: The Standard Widget Toolkit
http://www.eclipse.org/swt/

[16] Leping Huang, Mitsuharu Iijima, Kaoru Sezaki, “A
Survey on Human Perception of Delay in a
Cooperation System”, IEICE Communications Society
Conference 1999, B-11-12, Chiba, Japan, Sep.1999

